The noninvasive point of care MBT accurately predicts decompensation events better than MELD in compensated (MELD <15) NASH cirrhotics

N. Chalasani1, E. Lawitz2, M. Abdelmalek3, M. Rinella4, S. Harrison5, A. Sanyal6, M. Noureddin7, D. Rockey8, T. Ilan Ber9, Y. Ilan10, G. Garcia-Tsao11, P. Traber12

INTRODUCTION

Patients with compensated non-alcoholic steatohepatitis (NASH) cirrhosis are at risk for developing decompensation (ascites, variceal bleeding or hepatic encephalopathy (HE)), the main determinant of survival. A Model for End Stage Liver Disease (MELD) score has been shown to be predictive of decompensation.

The 13C-Methacetin Breath Test (MBT) using the Exalenz BreathID® System, is a non-invasive, real-time molecular correlation spectroscopy assay that quantitates hepatic cytochrome P450 1A2 metabolism of ingested non-radioactive 13C-labeled methacetin by measuring the changes in the 13C/12C ratio in expired breath.

The MBT measures a relevant liver metabolic function that reflects overall liver function.

AIM

To evaluate the MBT’s ability to predict decompensation in compensated NASH cirrhosis.

MATERIAL & METHODS

MBT was performed on 160 patients with compensated NASH cirrhosis (i.e. no prior variceal hemorrhage, ascites or HE). All were followed prospectively for decompensation for an average of 420 days (maximal number of days=508).

Of the 160 patients enrolled, 15 were excluded due to MBT protocol violations and 1 for missing MELD, leaving 144 patients for analysis. Their baseline characteristics can be seen in Table 1.

RESULTS

• Twelve patients (8%) developed a first decompensating event during the study (Table 2), of which the first MBT identified 10. Events occurred on average within 188 ± 155 days (Min:13 d, Max: 426 d)
• The mean baseline maximal percent dose recovered (PDR-Peak) for the 12 patients with a decompensation event was 16.3%/h ± 11.5 (SD) and the mean baseline MELD was 7.7 ± 1.4 (SD).
• When setting cutoffs at median values: 21%/h for PDR-Peak and 7 for MELD (see Figure 1):
 - The hazard ratio (HR) for decompensation for the PDR-Peak was significant at 5.71 (95%CL: 1.24, 26.21; p=0.025).
 - The HR for decompensation for MELD was not significant at 2.3 (95%CL: 0.62, 8.52; p=0.214).

Table 1: Patient Population Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>No events n=132</th>
<th>Events n=12</th>
<th>Total n=144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females (%)</td>
<td>65.9%</td>
<td>83.3%</td>
<td>67.4%</td>
</tr>
<tr>
<td>Mean Age (SD) years</td>
<td>58.6 (8.5)</td>
<td>58.9 (9.3)</td>
<td>58.6 (8.6)</td>
</tr>
<tr>
<td>Mean BMI (SD) kg/m²</td>
<td>34.4 (6.3)</td>
<td>37.6 (5.4)</td>
<td>34.7 (6.3)</td>
</tr>
<tr>
<td>Mean MELD (SD)</td>
<td>7.2 (1.6)</td>
<td>7.7 (1.4)</td>
<td>7.3 (1.6)</td>
</tr>
<tr>
<td>Mean PDR-Peak (SD) %/h</td>
<td>22.8 (9.2)</td>
<td>16.3 (11.5)</td>
<td>22.2 (9.5)</td>
</tr>
</tbody>
</table>

Table 2: 1st Decompensation Event

<table>
<thead>
<tr>
<th>1st Decompensation Event*</th>
<th>n=12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascites</td>
<td>2</td>
</tr>
<tr>
<td>Variceal Hemorrhage</td>
<td>2</td>
</tr>
<tr>
<td>Gastropathy Hemorrhage</td>
<td>2</td>
</tr>
<tr>
<td>Hepatic Encephalopathy</td>
<td>6</td>
</tr>
</tbody>
</table>

* Events presented as defined by Galectin PI's

Figure 1: Kaplan Meier Plot with both MBT and MELD hazard ratios

Figure 2: The BreathID® Breath Test

CONCLUSION

MBT, which measures liver function, strongly predicts liver decompensation in patients with compensated NASH cirrhosis.

The data suggest that this safe, valid, operator-independent, non-invasive point-of-care tool may be a more effective clinical tool than currently used tools to help identify patients at increased risk for hepatic decompensation.

DISCLOSURES

The studies were sponsored by Galectin Therapeutics Inc. and Exalenz Bioscience Ltd.

YI is Medical Director of Exalenz Bioscience Ltd.

TIB is Medical Affairs Manager of Exalenz Bioscience Ltd.

AS is a consultant for Exalenz Bioscience Ltd.

Contact information

Naga Chalasani: nchalasa@iu.edu